Scanning Near-Field Ellipsometry Microscopy: imaging nanomaterials with resolution below the diffraction limit.

نویسندگان

  • Davide Tranchida
  • Jordi Diaz
  • Peter Schön
  • Holger Schönherr
  • G Julius Vancso
چکیده

We introduce a simple Scanning Near-Field Ellipsometer Microscopy (SNEM) setup to address the rapidly increasing need for simple, routine optical imaging techniques with resolution well below the diffraction limit. Our setup is based on the combination of commercially available atomic force microscope (AFM) and ellipsometry equipment with gold-coated AFM tips to obtain near-field optical images with a demonstrated resolution below λ/10. AFM topographical data, obtained in contact mode, and near-field optical data were acquired simultaneously using a combined AFM-ellipsometer. The highly enhanced field due to lightning-rod effects and localized surface plasmons excited at the end of the gold-coated tip allowed us to resolve and identify metallic nanoparticles embedded in poly(methyl methacrylate) as well as microphases in microphase-separated block copolymer films.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Imaging Skin Cancer by Apertureless Scanning Near-field Optical Microscopy

Laser Scanning Microscopy Techniques such as Confocal Microscopy, Two Photon Excitation Microscopy, Second Harmonic Generation Microscopy or Fluorescence Lifetime Imaging have been successfully employed to date for imaging skin cancer. However, the resolution that such techniques can provide is limited by diffraction, which prevents accurately imaging (and differentiating) optical details sized...

متن کامل

Optical Microscopy Beyond the Diffraction Limit: Imaging Guided and Propagating Fields

Diffraction limits standard optical microscopy to a spatial resolution of about half the wavelength of light. We present novel microscopy techniques for imaging semiconductor materials and devices at better than diffraction-limited spatial resolution and observe previously inaccessible phenomena. We discuss the methods and results for Numerical Aperture Increasing Lens (NAIL) and Near-field Sca...

متن کامل

High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution.

Light microscopy has greatly advanced our understanding of nature. The achievable resolution, however, is limited by optical wavelengths to approximately 200 nm. By using imaging and labeling technologies, resolutions beyond the diffraction limit can be achieved for specialized specimens with techniques such as near-field scanning optical microscopy, stimulated emission depletion microscopy, an...

متن کامل

An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit

Optical microscopy suffers from a fundamental resolution limitation arising from the diffractive nature of light. While current solutions to sub-diffraction optical microscopy involve combinations of near-field, non-linear and fine scanning operations, we hereby propose and demonstrate the optical super-microscope (OSM) - a superoscillation-based linear imaging system with far-field working and...

متن کامل

Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit

Near-field optical imaging methods have been suffering from the issue of a near field diffraction limit, i.e. imaging resolution and fidelity depend strongly on the distance away from objects, which occurs due to the great decay effect of evanescent waves. Recently, plasmonic cavity lens with off-axis light illumination was proposed as a method for going beyond the near field diffraction limit ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 3 1  شماره 

صفحات  -

تاریخ انتشار 2011